Exercice 1: (Analyse d’une machine à états finis: 10 points)

Le système séquentiel est décrit par le graphe d’états de Fig. 1:

1.1. En étudiant la chaîne directe de ce graphe:

 a. Le type de cette machine (Moore ou Mealy). Justifier.
 Il s’agit d’une machine de **Mealy**, car la sortie du séquenceur dépend de la combinaison des entrées et de l’état, ex : l’entrée « T = 1 » entraîne à la fois une sortie = 0 si le système est à l’état (2) ou une sortie = 1 si le système est à l’état (4).

 b. Le nombre de variables secondaires. Justifier.
 Le système admet 4 états = 2^2. Il est alors décrit par 2 variables secondaires.

 c. La syntaxe de la séquence lue par le système.
 D’après la chaîne directe, la sortie se met à 1 si la séquence lue est : A*GGG....GT
 Avec *= {A, C, G, T}

1.2. La matrice de transitions de cette machine : on va Supposer qu’on utilise les variables x_2 et x_1 pour coder les entrées (A, C, G, T), la variable S pour coder la sortie, les variables y_2 et y_1 pour coder les variables secondaires.
Codage :
Pour les entrées, on choisit :
\[A \to (x_2, x_1) = (0,0) \]
\[C \to (x_2, x_1) = (0,1) \]
\[G \to (x_2, x_1) = (1,1) \]
\[T \to (x_2, x_1) = (1,0) \]

Pour les états, on choisit :
\[(1) \to (y_2, y_1) = (0,0) \]
\[(2) \to (y_2, y_1) = (0,1) \]
\[(3) \to (y_2, y_1) = (1,1) \]
\[(4) \to (y_2, y_1) = (1,0) \]

<table>
<thead>
<tr>
<th>États actuels</th>
<th>États futurs</th>
<th>Sortie S</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x_2 x_1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(1)</td>
</tr>
<tr>
<td>(2)</td>
<td>(3)</td>
<td>(3)</td>
</tr>
<tr>
<td>(3)</td>
<td>(2)</td>
<td>(1)</td>
</tr>
<tr>
<td>(4)</td>
<td>(2)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

1.3. Équation des états futurs : 2 pts

<table>
<thead>
<tr>
<th>(y_2 y_1)</th>
<th>États futurs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x_2 x_1)</td>
</tr>
<tr>
<td></td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>01</td>
</tr>
<tr>
<td>10</td>
<td>01</td>
</tr>
</tbody>
</table>

\[Y_2 Y_1 \]

<table>
<thead>
<tr>
<th>(y_2 y_1)</th>
<th>États futurs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x_2 x_1)</td>
</tr>
<tr>
<td></td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>01</td>
</tr>
<tr>
<td>10</td>
<td>01</td>
</tr>
</tbody>
</table>

\[Y_2 \]

\[Y_2 = y_2 y_1 + y_2 x_2 x_1 \]
1.4. Equation de la sortie S :

\[S = x_2 x_1 y_1 y_2 \]

\[Y_j = x_2 x_1 + y_2 y_1 \]

1.5. Si l’on veut réaliser ce système utilisant des bascules (J, K), on associe à la variable Y_2 la bascule (J_2, K_2) et à la variable Y_1 la bascule (J_1, K_1) :

\[J_2 = y_j, \quad K_2 = y_2 (\overline{x_2} + x_j) \]

\[J_1 = y_{\overline{j}} + (x_2 x_j), \quad K_1 = (x_2 + x_j) \]
Exercice 2: (Synthèse d’un système séquentiel asynchrone utilisant la méthode de synthèse d’Huffman: 10 points)

- Les entrées \(x_1 \) et \(x_0 \) ne peuvent pas changer d’états simultanément.

- La sortie prend la valeur \((Z = 1)\) si \(x_1 \) et \(x_0 \) suivent la séquence suivante: \(x_1 x_0 = \{00, 10, 11\} \).
- La sortie conserve l’état \((Z = 0)\) pour toute autre séquence des entrées \(x_1 \) et \(x_0 \).

2.1- Le graphe d’états de ce système :

![Graphe d’états](image)

2.2- La matrice primitive des états :

\[
\begin{array}{c|cccc}
& 00 & 01 & 11 & 10 \\
\hline
1 & 1 & 4 & - & 2 \\
2 & 1 & - & 3 & 2 \\
3 & - & 4 & 6 & 1 \\
4 & 1 & 5 & - & 0 \\
5 & - & 4 & 6 & 0 \\
6 & 1 & - & 5 & 0 \\
\end{array}
\]

2 pts
2.3- La matrice réduite :

```
Polygone des fusions
```

```
x_{i}\n
\begin{array}{cccc}
00 & 01 & 11 & 10 \\
a & 1 & 4 & 3 & 2 \\
b & - & 4 & 3 & 6 \\
c & 1 & + & 5 & 0 \\
\end{array}
```

2 pts

2.4- Les équations des variables secondaires

```
\begin{array}{|c|c|c|c|c|}
\hline
y_{i}y_{0} & x_{i}x_{0} & 00 & 01 & 11 & 10 \\
\hline
00 & 00 & 11 & 01 & 00 \\
01 & XX & 11 & 01 & 11 \\
11 & 00 & 11 & 11 & 11 \\
10 & XX & XX & XX & XX \\
\hline
\end{array}
```

\[Y_{i} = x_{0}x_{i}y_{0} + x_{i}y_{0}x_{0}, \quad Y_{0} = x_{0} + x_{i}y_{0}x_{0} = x_{0} + x_{i}y_{0} \]

2 pts

2.5- L’équation de la sortie Z

```
\begin{array}{|c|c|c|c|c|}
\hline
y_{i}y_{0} & x_{i} & 00 & 01 & 11 & 10 \\
\hline
00 & 0 & X & X & 0 \\
01 & X & X & 1 & X \\
11 & X & 0 & 0 & 0 \\
10 & X & X & X & X \\
\hline
\end{array}
```

\[Z = y_{i}y_{0} \]

1 pt
2.6- Logigramme de ce système, en utilisant des portes logiques :